$\mathbf{core}_\mathbf{2}^{9,38}$

COM: $core_2$ _begin

COM: $core_2$ -summary

COM: Core $_2$ abstractions

ABS: Y ycomb

ABS: t.2 **pi2**

ABS: t.1 pi1

ABS: x(s) so_apply1

ABS: $x(s_1,s_2)$ so_apply2

ABS: $x(s_1,s_2,s_3)$ so_apply3

ABS: $x(s_1, s_2, s_3, s_4)$ so_apply4

ABS: $x(s_1,s_2,s_3,s_4,s_5)$ so_apply5

ABS: x(a,b,c,d,e,f) so_apply6

ABS: x(a,b,c,d,e,f,g) so_apply7

ABS: $x f y infix_ap$

ABS: $\lambda_2 x$. t(x) so_lambda1

ABS: $\lambda_2 x, y$. t(x;y) so_lambda2

ABS: $t \dots$ \$L label

ABS: $\{T\}$ guard

ABS: ??? error

ABS: \mathbb{P} prop

ABS: $A \circ A$ cand

ABS: $parm{i}$ parameter

COM: CORE_WF_THEOREMS

STM: false_wf

STM: $true_wf$

 $STM: squash_wf$

STM: $guard_wf$

STM: $unit_wf$

STM: not_wf

 $STM: comb_for_not_wf$

STM: $rev_implies_wf$

 $STM: comb_for_rev_implies_wf$

 $STM: iff_wf$

 $STM: comb_for_iff_wf$

STM: nequal_wf

 $STM: member_wf$

 $STM: comb_for_member_wf$

COM: COMBS_acom

ABS: I icomb

STM: icomb_wf

ABS: K kcomb

STM: kcomb_wf

ABS: S scomb

 $STM: scomb_wf$

COM: PRODUCT_DEFS_acom

STM: $pi1_wf$

STM: $pi2_wf$

STM: pair_eta_rw

ABS: let x,y,z = a in t(x;y;z) spread3

ABS: let w,x,y,z = a in t(w;x;y;z) spread4

ABS: let a,b,c,d,e = u in v(a;b;c;d;e) spread5

ABS: let a,b,c,d,e,f=u in v(a;b;c;d;e;f) spread6

ABS: let a,b,c,d,e,f,g=u in v(a;b;c;d;e;f;g) spread7

COM: UNIT_DEFS_acom

 $\mathrm{ABS:}\cdot\mathbf{it}$

STM: it_wf

STM: unit_triviality

 $COM:\ CONSTR_PROPERTIES_com$

ABS: Dec(P) decidable

STM: $decidable_wf$

STM: $decidable_or$

 $STM: decidable_and$

STM: $decidable_implies$

STM: decidable_false

STM: decidable_not

STM: $decidable_iff$

 $STM: decidable_int_equal$

STM: $decidable_lt$

 $STM: decidable_le$

 $STM: decidable_atom_equal$

STM: $iff_preserves_decidability$

ABS: Stable $\{P\}$ stable

STM: $stable_wf$

STM: $stable_not$

 $STM: stable_function_equal$

 $STM: stable_from_decidable$

ABS: SqStable(P) sq_stable

 $STM: sq_stable_wf$

STM: sq_stable_and

STM: $sq_stable_implies$

STM: $sq_stable__iff$

STM: sq_stable_all

STM: $sq_stable__equal$

 $STM: sq_stable__squash$

 $STM: sq_stable_from_stable$

STM: $sq_stable__not$

 $STM: sq_stable_from_decidable$

ABS: XM xmiddle

 $STM: xmiddle_wf$

STM: $sq_stable_iff_stable$

STM: $squash_elim$

 $COM: LOGIC_THMS_tcom$

STM: $dneg_elim$

STM: dneg_elim_a

STM: iff_symmetry

STM: and_assoc

STM: and_comm

 $STM: or_assoc$

STM: or_comm

STM: not_over_or

STM: not_over_or_a

STM: not_over_and_b

STM: not_over_and

 $STM: and_false_l$

STM: and_false_r

STM: and_true_l

STM: and $true_r$

STM: or_false_l

STM: or_false_r

 $STM: or_true_l$

STM: or_true_r

STM: $exists_over_and_r$

STM: not_over_exists

COM: EQUALITY_THMS_tcom

STM: equal_symmetry

COM: REWRITE_SUPPORT_tcom

STM: iff_transitivity

STM: implies_transitivity

STM: and_functionality_wrt_iff

STM: and functionality $\operatorname{wrt_implies}$

STM: $implies_functionality_wrt_iff$

STM: $implies_functionality_wrt_implies$

STM: decidable_functionality

STM: iff_functionality_wrt_iff

 $STM: all_functionality_wrt_iff$

STM: all_functionality_wrt_implies

STM: $exists_functionality_wrt_iff$

STM: $exists_functionality_wrt_implies$

 $STM: not_functionality_wrt_iff$

STM: not_functionality_wrt_implies

STM: or_functionality_wrt_iff

 $STM: or_functionality_wrt_implies$

STM: $squash_functionality_wrt_implies$

 $STM: squash_functionality_wrt_iff$

 $STM: implies_antisymmetry$

COM: GENERALIZATION_tcom

STM: gen_hyp_tp

 $COM: MISC_DEFS_com$

ABS: let x = a in b(x) let

 $STM: let_wf$

COM: $type_inj_acom$

ABS: $[x]{T}$ type_inj

COM: choicef_com

ABS: $\in x:T$. P(x) choicef

STM: choicef_wf

STM: choicef_lemma

STM: fun_thru_spread

STM: $spread_to_pi12$

ABS: $\{a:T\}$ singleton

STM: singleton_wf

STM: $singleton_properties$

ABS: $\{!x:T \mid P(x)\}$ unique_set

STM: unique_set_wf

ABS: a = !x:T. Q(x) uni_sat

STM: uni_sat_wf

STM: uni_sat_imp_in_uni_set

STM: $sq_stable_uni_sat$

STM: $comb_for_pi1_wf$

 $STM: comb_for_pi2_wf$

COM: $core_2_end$

 $http://www.nuprl.org/FDLcontent/p0_359040_/p2_2726_\{core_2\}.html$